

OCR Computer Science A Level

1.2.4 Types of Programming Language
Intermediate Notes

www.pmt.education

Specification:

1.2.4 a)

● Programming paradigms
○ Need for these paradigms
○ Characteristics of these paradigms

1.2.4 b)
● Procedural languages

1.2.4 c)

● Assembly language
○ Following LMC programs
○ Writing LMC programs

1.2.4 d)
● Modes of addressing memory

○ Intermediate, Direct, Indirect, Indexed

1.2.4. e)

● Object-oriented languages
○ Classes
○ Objects
○ Methods
○ Attributes
○ Inheritance
○ Encapsulation
○ Polymorphism

www.pmt.education

Programming Paradigms

Programming paradigms are different approaches to using a programming language to
solve a problem. They are split into two broad categories - imperative and declarative -
which can be broken down further into more specific paradigms. The paradigm used
depends on the type of problem that needs solving.

Imperative
Imperative programming paradigms use code that clearly specifies the actions to be
performed .

Procedural
Procedural programming is one of the most widely-used
paradigms as it can be applied to a wide range of problems
and is easy to write and interpret. This type of programming
uses a sequence of instructions , often contained within
procedures. These instructions are carried out in a
step-by-step manner.

Object-Oriented
Object-oriented programming (referred to as OOP) is
another popular paradigm as it is applicable to problems
which can be broken into reusable components with similar
characteristics. OOP is built on objects formed from classes
which have attributes and methods . OOP focuses on
making programs that are reusable and easy to update and
maintain .

www.pmt.education

Declarative
Declarative programming states the desired result and the programming language
determines how best to obtain the result. The details about how it is obtained are
abstracted from the user. Declarative programming is common in expert systems and
artificial intelligence.

Functional
Functional programming uses functions, which form the
core of the program. Programs are made up of function
calls, often combined within each other. Functional
programming is closely linked to mathematics.

Logic
Logic languages use code which defines a set of facts and rules based on the problem.
Queries are used to find answers to problems.

Procedural Language

Procedural programming is used widely in software development as it is simple to
implement and applicable to most problems. However, it is not possible to solve all kinds
of problems with procedural languages or may be inefficient to do so.
Procedural languages use traditional data types which are built into the language and also
provides data structures. Structured programming is a popular subsection of procedural
programming in which the control flow is given by four main programming structures:

- Sequence
Code is executed line-by-line, from top to bottom.

- Selection
A certain block of code is run if a specific condition is met , using IF
statements.

- Iteration
A block of code is executed a certain number of times or while a condition is
met. Iteration uses FOR, WHILE or REPEAT UNTIL loops.

- Recursion
Functions are expressed in terms of themselves. Functions are executed
until a certain condition known as a base case is met.

www.pmt.education

Assembly Language

Assembly language is a low level language that is the next level up from machine code .

Assembly language uses mnemonics , which makes it easier to use than direct machine
code. Each mnemonic is an abbreviation for a machine code instruction and is
represented by a numeric code. However, the commands that assembly language uses
are processor-specific.

Each line in assembly language is equivalent to one line of machine code.
Below is a list of the mnemonics you need to be aware of and be able to use:

Mnemonic Instruction Function

ADD Add Add the value at the given memory address to the
value in the Accumulator

SUB Subtract Subtract the value at the given memory address
from the value in the Accumulator

STA Store Store the value in the Accumulator at the given
memory address

LDA Load Load the value at the given memory address into the
Accumulator

INP Input Allows the user to input a value which will be held in
the Accumulator

OUT Output Prints the value currently held in the Accumulator

HLT Halt Stops the program at that line, preventing the rest of
the code from executing.

DAT Data Creates a flag with a label at which data is stored.

BRZ Branch if zero Branches to a given address if the value in the
Accumulator is zero. This is a conditional branch.

BRP Branch if positive Branches to a given address if the value in the
Accumulator is positive. This is a conditional branch.

BRA Branch always Branches to a given address no matter the value in
the Accumulator. This is an unconditional branch.

www.pmt.education

Below is an example of an LMC program which returns the
remainder, called the modulus, when num1 is divided by
num2.

INP
STA num1
INP
STA num2
LDA num1

 positive STA num1 // branches to the ‘positive’ flag,
SUB num2 subtracting num2 while the result
BRP positive of num1 minus num2 is positive
LDA num1
OUT
HLT

 num1 DAT
 num2 DAT

Modes of Addressing Memory

Machine code instructions are made up of two parts, the opcode and operand. The opcode
specifies the instruction to be performed and the addressing mode . The operand holds a
value related to the data on which the instruction is to be performed. The addressing mode
specifies how the operand should be interpreted.
Addressing modes are used to allow for a much greater number of data storage locations.
There are four addressing modes you need to know:

- Immediate Addressing
The operand is the actual value upon which the instruction is to be
performed, represented in binary,

- Direct Addressing
The operand gives the address which holds the value upon which the
instruction is to be performed. Direct addressing is used in LMC.

- Indirect Addressing
The operand gives the address of a register which holds another address,
where the data is located .

- Indexed Addressing
An index register is used, which stores a certain value. The address of the
operand is determined by adding the operand to the index register.

www.pmt.education

Object Oriented Language
Object-oriented languages are built around the idea of reusable classes. A class is a
template for an object and defines the state and behaviour of an object. State is given by
attributes which give an object’s properties . Behaviour is defined by the methods
associated with a class, which describe the actions it can perform.
Classes can be used to create objects by a process called instantiation . An object is a
particular instance of a class, and a class can be used to create multiple objects.
A class is associated with an entity. For example, take a class called ‘Library’. It could
have attributes ‘number_of_books’, ‘number_of_computers’ and methods

‘add_book’ and ‘remove_book’
amongst others. Similarly, ‘Book’ could also
be a class.

set_reserved and set_onloan are a
special type of method called Setters. A
setter is a method that sets the value of a
particular attribute. In this example,
‘set_reserved’ would set the attribute
‘Reserved’ to ‘True’ if someone was to
reserve that book. A getter is another special
method used in OOP which retrieves the
value of a given attribute .

Getters and setters ensure attributes cannot be directly accessed and edited by users.
This is called encapsulation, in which attributes are declared as private so can only be
altered by public methods.
Every class must also have a constructor method, called ‘new’. A constructor allows a
new object to be created.

Below is part of the pseudocode for the ‘Book’ class described above:

class Book:

private reserved
private onLoan
private author
private title
public procedure new(title,author,reserved,onLoan)

title = givenTitle
author= givenAuthor
reserved = givenReserved
onLoan = givenOnLoan

endprocedure
public function set_reserved()

reserved=True
end function

Endclass

www.pmt.education

This is how a constructor is used to create a new object called ‘myBook’ from the ‘Book’
class:

myBook = new Book(‘Great Expectations’, ‘Charles Dickens’,’False’,
False’)

When a book is reserved, the following code would be used to call the setter function:

myBook.set_reserved()

Another property of object-oriented programming is inheritance.
When a class inherits from another, the subclass will possess
all of the methods and attributes of the superclass and can also
have its own additional properties . This feature of OOP allows
programmers to effectively reuse certain components and
properties while making some changes.

Inheritance would be expressed as:

class Biography inherits Book

Polymorphism is a property of OOP that means objects can
behave differently depending on their class. There are two
categories of polymorphism: overriding and overloading.
Overriding is redefining a method within a subclass and altering the code so that it
functions differently and produces a different output.
Overloading is passing in different parameters into a method.

Advantages

- OOP allows for a high level of reusability, which makes it useful for projects where
there are multiple, similar components.

- Classes can also be used across multiple projects.
- Encapsulation makes the code more reliable by protecting attributes from being

directly accessed.
- OOP requires advance planning and a thorough design can produce a

higher-quality piece of software with fewer vulnerabilities .
- The modular structure used in OOP makes it easy to maintain and update .
- Once classes have been created and tested, they can be reused as a black box

which saves time and effort.

Disadvantages

- This is a different style of programming and so requires an alternative style of
thinking.

- OOP is not suited to all types of problems and can sometimes produce a longer,
more inefficient program .

- Generally unsuitable for smaller problems.

www.pmt.education

